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INSTABILITY OF STEADY FLOWS WITH CONSTANT VORTICITY IN VESSELS OF 
ELLIPTIC CROSS-SECTION* 

V.A. VLADIMIROV and D.G. VOSTRETSOV 

The problem of the stability of steady flows of a perfect incompressible 
fluid in vessels of elliptic cross-section is studied. The flow velocity 
field ofthemain stream is a linear function of the coordinates and the 
vorticity is constant. The spectral problem for the linear perturbations 
is solved using the mehtod of consecutive approximations. The instability 
of the flows to a first approximation is demonstrated. A special case 
of the flow in a triaxial ellipsoid is analysed in detail. Theoretical 
predictions agree well with the experimental results /l/. The present 
paper, unlike the analysis carried out in /l/, deals with an appreciably 
wider class of perturbations and the Galerkin method of rough a priori 
approximation is not used. 

The problem of stability of flows of this type is of interest when 
describing the properties of a liquid-filled gyroscope /2-4/and the 
behaviour of the star and planetary cores /5/. At the same time, a flow 
with a linear velocity field represents the simplest example of the 
realization of the new mechanism of instability of rotational flows 
connected with disturbance of the rotational symmetry /6-g/. 

1. Formulation of the problem. A perfect incompressible fluid of uniform density 
completely fills a vessel, the boundary of which is described in a Cartesian system of 
coordinates xO,y,,,zo by the relations 

r,%* + yo=/b’ + cp (dc) = 0 (1.1) 

with three constants, a, b and c. Any intersection of the vessel by the plane z0 5= const 
produces an ellipse with a ratio of the semi-axes equal to alb> 1. The function m(z,/c) is 
assumed to be non-positive and fairly smooth in some interval of variation of the argument 
2,/c corresponding to the height of the vessel. For a vessel of finite height we can choose 
-1<zo/c<1. 

An exact solution of the equations of motion satisfying the conditions of impermeability 
at the surface (1.1) is given by the following expression forthe velocity field u: 

u = (--aQydb, bQx,Ja, 0) u.9 

Here S2 is a constant with dimensions of angular velocity. The flow (1.2) is character- 
ized by constant vorticity which has a single non-zero component z,,. The vorticity establishes 
itself e.g. after a sudden stoppage of the vessel, filled with fluid and regarded as a rigid 
body. 

The problem consists of investigating the stability of the flow (1.2) in the vessel (1.1) 
in the linear approximation. 

The investigation is carried out using the "deformed" cylindrical coordinates r, 8, 2, 
such, that 

x,la = r cos 8, y,lb = r sin 8, z,lR = z 

R _= abll/V, (a” + b’) 

We also introduce the dimensionless time f zs Q2t. 
Since the basic flow (1.2) is stationary and the corresponding boundary conditions of 

impermeability at (1.1) hold, the problem of stability is reduced to a study of the pertur- 
bations depending harmonically on time. In particular, the pressure P perturbation field 
is given by 

P (r, 8, 2, w) = p (r, 0, 2) e-(@r (1.3) 
with complex amplitude function p and frequency 0. 

Using well-known /l/ methods we obtain the following equation for p from the equations 
of motion: 
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(1.4) 

Similarly we can show that at the boundary (1.1) described by the equation 

9 + cp (z/h) = 0, h se CIR 

the conditions of impermeability yield the relation 
(1.5) 

D (Dp, +- 2r-‘~0) + [$/(&)I (De + 4)p, = '/~a (8'+'N+K+ + 
eS@N-K-) p 

(1.6) 

The problem (1.4)-(1.6) represents a spectral problem for determining the eigenfunctions 
p(r,B,z) and eigenfrequencies 0. The existence of even a single eigenvalue o with Im w>O 
means that the flow (1.2) is unstable. Since the eigenvalues in (1.4)-(1.6) appear as complex 
conjugate pairs, the condition Im o#O, is sufficient for instability to occur. 

Below we investigate problem (1.4)-(1.6) using the method of consecutive approximations, 
taking the smallness of e into account. We assume that expansions of p and o in integral 
powers of e exist 

(Pd4=~Od(Pv*~) @=0,X2 I...) (1.7) 

The problem of the convergence of the series (1.7) is not touched upon, and we confine 
our investigation to a detailed study of the first two approximations and to their comparison 
with experiment. 

2. Zero approximation. The zero approximation solutions of problem (1.4!-(1.7) 
represent inertial waves in a liquid enclosed in an axisymmetric reservoir (1.5) and rotating 
as a rigid body. Since when a = 0 the coefficients of the Eqs.(l.4), (1.6) are independent 
of 6, the problem reduces to investigating harmonics of the form 

PO (r, 0, 2) = A, (P, 2) eime (2.1) 

with integral wave numbers rn = O,&l,~Z, . . . . From (1.4)-(1.7) we obtain the following 
problem for A,,,: 

Problem. We have to find the solution of the problem 

satisfying on (1.5) the boundary conditions 

L&+$-A,,,- 
m 

~A,,=0 

(2.2) 

(2.3) 

Solution oftheproblem (2.2), (2.3) will enable us to determine the form of the eiqen- 
functions A,,, (r,z) and dispersion relations o. = o. (m,h). 

In the general case when the vessel has an arbitrary shape, we know /lo/ that the spectrum 
of the eigenvalues w,, of the problem (2.21, (2.31 is real and concentrated on the-segment 

m--2<o,<mS-2 (2.4) 
This implies, in particular, that @,,,a> 0. We should also note the antisymmetry of the 

dispersion relation which follows from the form of (2.2), (2.3) 

o,(m,h) = --o,(-m,h), (2.5) 

3. Instability in the general case, The instability to a first approximation 
(Im 6~#0) can be illustrated for any function 'p in (1.1). “PO do this, we must choose the 
zero approximation in the form of the sum of the harmonics (2.1) with m = f-: 

p. = eA1eie + BA_,e-'e (3.1) 

Here a and G are independent complex constants. Expression (3.1) implies, by virtue of 
(1.3), (1.7), that the harmonics m =I and m = -i have the same frequency 61~. It is clear 
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that such a degeneration does not occur for any value of the geometrical parameter h (1.5). 
The suitable values h ==h, are found as the coordinates of the points of intersection of the 
families of dispersion curves w0 (1,h) and a,,(--l,h) in the plane of the variables a,,*&. 
Such intersections occur by virtue of the overlap of the spectra for m= 1 and m = -1 on 
the segment --l<o,<i (2.4). The antisymmetry of (2.5) corresponds to the intersections 
appearing on the axis 00 = 0. 

The basic result which will be obtained shortly, consists of the fact that for every point 
of intersection o0 = 0,h =h, we have a corresponding range of values [h-& I(&,, on which 
the flow (1.2) is unstable to a first approximation (Im al+ 0). 

Substituting o,=O into (2.2), (2.3) we conclude that A_x=Ax~A. After this we can 
rewrite (3.1) in the form 

pa = (aeie + Ee-‘e) A (3.2) 
where A (r,z) satisfies the equation with boundary conditions at the surface (1.5) 

,A,,(-& +++-&,$)A=0 

cA+~+2-g+l=O 

The functional form of the solution to a first approximation follows from (3.2), and the 
appearance of the multipliers ,*a$@ on the right-hand sides of (1.4), (1.6): 

pl= Bei@ f Be-‘0 + &HfJ + ife-s<8 (3.5) 

Here B,&C,C are four different functions of the arguments I and z, and are to be 
determined. 

Eq.Cl.4) to a first approximation (linear in e) yields 

L+B = cmj~ + iffs 
L+B = -Zoj, + afa 

(3.6) 

Similarly, from the boundary conditions (1.6) we obtain 

G+B = a (olgl + h,g,) + Gga 
G+B = 5 (-w, + h,g,) -t wa 
g1=2 

( 
+$A”- A) 

g, = */a @A, f A) 

(3.7) 

In accordance with the results given above, we introduce into (3.7) L =he+ehl, and 
the zero subscript accompanying the derivatives ofthe functi0n.m means that the quantity h 
in its argument has been replaced by hw 

The problem now consists of finding the solutions of inhomogeneous Eqs.(3.6) with in- 
homogeneous boundary conditions (3.7). We find, however, that we can determine' o1 (and thus 
solve the most interesting part of the problem) without obtaining explicit expressions for B 

and B. To do this we use the fact that the differential form A-rL+ is selfconjugate. The 
following Green's relation holds for any function and for v: 

VAU- UAV = [P (uy. - uv,)l, - 3r (vu; - w& 

Selecting v = A,u = B, integrating the resulting equation over the area of meridianal 
cross-section S (1.5), transforming the integrals over the area S into line integrals over the 
boundaries aS and using the relations (3.3), (3.4), (3.6), (3.7), we can obtain the first 
of two equations 

a(o,x, + hp,) + iix, = 0 

I (-qxx + h& + rut, = 0 

xi~Fi-Vi, Pi= $ Afir&& 
s 

Vi= $ Agidz, I=&&3 
88 

(3.8) 

The quantities flrfB,g17gs,g, are given by (3.6), (3.7); fz”0. The second equation of 
(3.8) is obtained in the same manner as the first. 

The condition for a non-trivial solution a,Z of system (3.8) to exist yields the 
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expression 

CO12 = (h,%,2 - x,2)/x,2 (3.9) 
The minimum value of (3.9) is attained when h, = 0, and we always have the instability 

The interval of "unstable" values of h is given by the 

I h, I <h* = I %i% I 

inequality 

(3.10) 

(3.11) 

4. Flow in a triaxial ellipsoid. We will extend the concepts given in Sect.3 by 
considering a problem of the stability of the flow (1.2) in a vessel in the shape of a triaxial 
ellipsoid. In 

The exact 
functions /l/. 

this case we have in (l.l), (1.5) 

cp = (z&)2 - 1 = (z/h)a - 1 

solution of (2.2), (2.3) for an ellipsoid can be written in terms of special 
With this in mind, we introduce the new variables E,,, and n,,, 

r = a, [(i - Ly(i- q,2p (4.1) 
~=fum~h a,= (1 + h2/pmy 

in which half of the ellipse ra -/- za/ha< 1,r> 0 is mapped onto a rectangle S,: 

--a,<<L<%, %,,<%,,<I, a,=hl(h2+l%,Y (4.2) 

In the new variables (2.2) will have a denumerable number of bounded solutions expressed 
in terms of the associated Legendre polynomials p$ml: 

A m, 1= C’ Em) PP’ (%I) 

The index 1 can be equal to any integer greater than Irn I- 1. The boundary condition 
(2.3) is reduced to the equation 

( 
i--a a d ---_-_zE) pp@+J=o 

%l %I 

from which we find a, and the dispersion relation o,(m,h). Here we must take into account 
the relation 

uma = 4a,,,V[ha + (1 - ha) amal 

Having written the solution in the zero approximation in the form of the sum of the 
harmonics 

(4.4) 

with some set of coefficients a,,l, we encounter the problem of computing the first approxi- 
mation. In order to solve the problem of stability completely, we must have the answer for 
any set of coefficients a,,,. We find, however, that depending on what terms appear in (4.4), 
the quantity o1 may be real, as well as complex. We classify the cases using the following 
general assertions. 

lo. If the zero approximation is chosen in the form of a single harmonic (a single term 
in (4.4)) with any value of m, then the quantity o1 is real. 

2O. Let the sum (4.4) contain an arbitrary number of terms. If these terms do not 
contain terms with different m but the same oO (no degeneration), then o1 are real. 

3O. When we have such terms (the case of degeneracy), two different versions are possible. 
If these terms do not include two terms with m = m, and m = mpI such that Im, - ??a8 I = 2, 
then o1 is real. If there are such terms, then o1 are always complex. 

4O. The domains of instability (1m o,#O) in the plane h,s have the form of "resonance' 
zones. The equation for each of these zones is written in the form Ih -& I< &, with the 
constants h, and h,. The quantity h, represents the value of h at which the degeneration 
mentioned above occurs with Im, - mp I = 2. 

The parts of the assertions formulated above referring to the existence of instability 
(Im o,#O), are proved by following, basically, the arguments of Sect.3. The assertions 
concerning the real character of or are simpler, and are obtained in the same manner. 

Below we consider the simplest cases, to whose study the proof of instability can be 
reduced. 

In accordance with what was said before, we write the function pO of the zero approximation 
for the "dangerous" perturbations in a form which generalized (3.1) 

p,, = eA(&, q)ei(n+na + &$(& ~),$(n-l)s (4.5) 

where n is an arbitrary integer. In order to reduce the length of the expressions we have 
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used in (4.5), and will continue to use from now on, the letters without indices and without 
a bar to denote the quantities with indices n+i, and letters with a bar to denote the 
quantities with indices n - 1. Thus in (4.5) we have a~a,+r,l, d G CZ,,_~~ 

A c An+%, 19 A GZG A,,, 7, % G %TS+I, 9 s qn+l% E E %%-I 

‘Fi = rin-1; 1 and T are independent integers such that I> 1 n + 1 Ii, f> 1 n - 1 1. 

f 3 
w&7 97 

&7 .? 

-1 I 
0 7 P II 

Fig.1 

Expression (4.5) as well as (3.1), imply the existence of two solutions with the same 
frequency og. This is possible not at any height h, but only for a denumerable set of values 
h ho. =f corresponding, in the plane ~@,h, to the points of intersection of the dispersion 
curves oo(n- 1,h) and wo(n -I- 1,fr). Fig.1 depicts the intersecting families of dispersion 
curves O@(m,h) (4.3) at m = n f 1 for n = 0,1,2. The solid lines represent the harmonic 
n -I- 1% and the dashed lines the harmonic n- 1. The number accompanying the curve denotes 
the value of 1. Note that some pairs of values of m,l have two curves in Fig.1. 

The functional form of the solution to a first approximation is constructed according to 
(4.5), (1.41, (1.6) and represents a generalization of (3.5) 

PI = &i(n+na + jj&-n8 + C&n+sY3 + &+-am 

The quantities B,C;B,C denote the functions %, q;e,? and are to be determined. 
We write (3.6) in the following generalized form 

(4.6) 

where d,, On, urn are taken from (4.1), (2.2). 
Similarly, the boundary conditions (1.6) imply that the following relations hold at the 

boundary of the rectangle S,(4.21: 

(4.7) 
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In order to make the expressions shorter, we have retained on the right-hand sides of 

(4.6), (4.7) the derivatives in r and z, which can be expressed in the form of simple but 

bulky expressions in terns of the derivatives in E,,, and q,,,. In addition, in accordance with 

the results formulated in assertion 4O, we have introduced h =h,+eh, in (4.7), i.e. we 
assumed that h differs little from the "resonance" value h,. 

Table 

: i 

: 
0 
0,548 

0 0 

: 
1,087 
1,062 

: 
0,876 
1,389 

1 0,550 

f 
1,012 
2,110 

2 2,078 
2 1,069 

Below we use Green's equation which 

example, in the form 

- 

I - h. 

1 

1,803 
2,529 
1,315 
0,593 
0,772 
1,382 
1,571 
0,793 
1,037 
0,486 
0,645 
1,157 
0,190 

- 

I - a* h, 

:::iS 

8% 
0'547 
0:519 
0,453 
0,455 
0,460 
0,251 

EE 
0:967 
0,761 

095 
1,634 
3,341 
0,060 
0,709 
0,643 
1.205 

:an be written for a selfconjugate operator L, for 

Putting v=A,u=B, integrating the resulting equation over the area S, (4.2) and 

repeating the procedure used in deriving (3.8), we can obtain the following equations: 

a (0,x, + h&3) + ax, = 0 (4.8) 
a (c&R1 + h&) + a& = 0 

xi~Fi+Vi, FiE fiAdE& fs=Ot 
! 
o 1 

Vi~a( OSg,A/,dS+Sg,AIZ,drl+5g,AI~-Ilrl), i=1,2,3 
--a a a 

The expressions for zi,, are obtained by adding a bar to a,A,g,q, f,,gi in the expressions 

for x1. 

Fig.2 Fig.3 

The condition for a non-trivial solution of (4.8) to exist leads to the expression 

ol;=(--l(xlxr +glXS~+ [/Q(x&--Qc# + 4xliilxs~*l”~)/(2xl~l) 

The lowest value of the expression under the radical sign is reached when h, =O. The 
instability corresponds to ~,Z,/X~Z,(O. In this case we have, when h, = 0 

ol= + To,, - o*E1/--n&~/X& (4.9) 

We have instability when 

hl < h, z 2 Jf- xliilx*E.iir/l XlXS - ZlXS ( (4.10) 

When n=O, some of the points of intersection of the dispersion curves lie on the axis 

o,=o (Fig.1). We have here ii, = -xl, ES = x,, Ka = xI1 and the instability follows auto- 
matically from (4.9), (4.10). This result represents a special case of (3.10), (3.11). 

5. Results of computations. Comparison with experiment. The quantities o,,, 

h,, 0.7 h. were computed fdr all points of intersection of the curves oo(n*i,h) appearing in 
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Fig.1. The method of selecting the first few curves from their denumerable set is connected 
with the fact that the perturbations with smallest values of 1 (large scale perturbations) 
are best suited to illustrate and explain the experimental facts /l/. 

After determining the values of o,,.h,,, we computed 0. (4.9) and h, (4.10). We found 
that all points of intersection can be divided into two groups. The first group contains the 
points of intersection of the curves with different values of 1 , and we have o,=O for all 
these points, which corresponds to neutral stability to a first approximation. The second 
group contains all points of intersection of the curves with the same value of 1. Here et are 
real, and the perturbation amplitudes to a first approximation always increase exponentially. 
The table gives the values of oO, h,,o,, h, for points of intersection belonging to the second 
group. 

The general conclusion emerging from a comparison of the quantities .e. and h, at various 
different points (see table) consists of the fact that there is no weakening of instability as 
n or I increase. At the same time, the experiments quoted in /l/ showed the instabilities 
only for n=O and 00 = 0. This particular feature emerging when the theory is compared with 
experiment remains, so far, unexplained. 

When n=O,o,=O, we have good agreement between the results predicted by the theory and 
those obtained experimentally. Fig.2 shows the zones of instability /h-&I<&, in the plane 

h, 8, corresponding to the cases n=O,o,=O of the table. Fig.3 shows qualitative patterns 
indicating the directions of the velocity field of the unstable modes, in the meridianal cross- 
section of the ellipsoid for every zone shown in Fig.2. Fig.3a corresponds to h,=i, I=2; 3b 
corresponds to h, = 1,803, I= 3; b-h, = 0,593, 1= 4; and 3c corresponds to h, = 2,592, 1= 4. The cases 
I= 2,3,4 correspond, according to the terminology of /l/, to the single-, double- and triple- 
vortex instability. The correspondence between the patterns of Fig.3 and zones in Fig.2 is 
established simply by comparing the values of h,. The points in Fig.2 denote the values of 

h, 8 from the experiments in /l/. Two upper points appear almost in the middle of the zone 
corresponding to Fig.3b. In agreement with this theoretical prediction, the experiments show 
a two-vortex instability. The lower point in Fig.2 corresponds, in theory as well as in 
practice, to stable rotation of the liquid. Agreement between the theory and experiment is 
also shown in the correct prediction that the unstable vertical structure has zero velocity 
of rotation oO= 0. 

Comparing the results of the proposed theory with conclusions drawn in /l/, we must stress 
three points. Firstly, the predictions made in /l/ concern only the cases I?= O,o,=O. Secondly, 
in these cases the parameters b are the same in both theories, but h, are, generally speaking, 
different. Thirdly,the experimental data available at present agree with /l/, as well as with 
the theory given here. 
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